Subject programme

- 1. Subject name / subject module: Signal Processing
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Grad Piotr, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

	Teaching activities with the tutor																			
Mode of study		Form of classes														Total				
		sow	ECTS	Laboratory work	sow	ECTS		sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	ECTS
Full-time studies				32	43	2														
Part-time studies						3														3
Credit rigor				E	xam															

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	32
Preparation to laboratory classes	20
Independent study of the subject	5
Preparation to an exam test	16
Participation in an exam / graded assignment	2
Total student workload (TSW)	75
ECTS credits	3
* Student's workload related to trainings	75
Student's workload in classes requiring direct participation of academic teachers	32

- 7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:
 - Recommended admission requirements none.
 - Recommended duration of the subject is taken from the course plan.
- **8.** Specific learning outcomes knowledge, skills and social competence:

Outcome symbol	Specific learning outcomes for the subject Outcome description	Form	Teaching method	Methods for testing of (checking, assessing) learning outcomes						
	Knowledge									
K_W05	A student possesses sufficient knowledge of electronics, necessary to understand the processing of signals, and is able to apply this knowledge in practice through the selection of a suitable signal processing techniques for an application. A student possesses adequate theoretical and practical knowledge on signal parameters, signal processing algorithms, and about the role of those algorithms in control systems.	Laboratory work	Inquiry methods	Exam Student learning activities						
Skills										
K_U08	A student has sufficient skills to work with analog signals in measurement systems and to use computer software as a tool to simulate analog signal processing.	Laboratory work	Inquiry methods	Exam Student learning activities						

Subject programme

9. Assessment rules / criteria for each form of education and individual grades:

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Lab reports	dst, db, bdb, db (3,4,5,4)	arithmetic mean (3,4,5,4) * 50%	2,0
Exam	bdb (5)	5.0 * 50%	2,5
Final result			4,5
Grade		4,5/5 = 90%	db+ (4,5)

10. The learning contents with the form of the class activities on which they are carried out: (Laboratory work)

- 1. Signals in teleinformatics: Determined and Stochastic signals. Noise. Signal parameters. Elements of the Information Theory;
- 2. Transmission modulations. Analog modulations include AM, FM, PM and derived manipulation. PCM and DM digital modulation. Co-ders and Set-Top Box. Decision-making and interpolation. Optimal coding;
- 3. Primary and advanced DSP algorithms.

11. Required teaching aids:

- a. Lecture multimedia projector.
- b. Laboratory classes specialist laboratory.
- c. Exercises a room adapted for conducting classes in the form of exercises / workshops, multimedia projector.

12. Literature:

- a. Basic literature:
 - 1. Yuriy Shmaliy; Continuous-Time Signals; ISBN 978-1-4020-4818-0; Springer 2006
 - 2. Wasyl Wasylkiwskyj; Signals and Transforms in Linear Systems Analysis; ISBN 978-1-4614-3287-6; Springer, New York, NY 2013
- **b.** Supplementary literature:
 - 1. Chapman S.; MATLAB Programming with Applications for Engineers; ISBN 978-0-495-66807-7; Cengage Learning 2013
 - 2. Ulrich Karrenberg; Signals, Processes, and Systems; ISBN 978-3-642-38053-2; Springer, Berlin, Heidelberg 2013
 - 3. Apurba Das; Signal Conditioning; ISBN 978-3-642-28818-0; Springer 2012
 - 4. Marcel J.M. Pelgrom; Analog-to-Digital Conversion; ISNB 978-1-4614-1371-4; Springer 2017

Subject programme

- **c.** Internet sources:
 - 1. Scilab tutorial www.scilab.org/tutorials
 - 2. Matlab tutorial www.mathworks.com/support/learn-with-matlab-tutorials.html
 - 3. TI Principles of Data Acquisition and Conversion https://www.ti.com/lit/an/sbaa051a/sbaa051a.pdf
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Grad Piotr, dr inż.
3. Training	
4. Project classes	
5. Workshop classes	
6. Simulation game	
7. Language classes	